Role of Busbar in Electrical Power Distribution
A Busbar is a metallic conductor that serves as a central hub for multiple electrical connections. It can be solid, hollow, or flexible, and comes in various shapes. In this blog, we will understand the Types of Busbars and their roles in respective applications.
Essentially, it’s an electrical junction where all incoming and outgoing electrical currents converge. This means that a busbar collects electrical power in one place. The number of incoming and outgoing connections can be adjusted based on power requirements, always considering the busbar’s current carrying capacity. Busbars are integral components of substations, used in Low Voltage (up to 400V), Medium Voltage (around 11kV), and High Voltage (up to 765kV and beyond) systems.
Role of Busbar in Electrical Power Distribution
Busbars, simplify complex power distributions, making them more affordable by replacing multiple conductors and reducing costs.
By providing a single node point, it is easier to add protection to all incoming and outgoing connections based on busbar connection schemes. A Busbar system includes isolators and circuit breakers. When a fault occurs, the circuit breaker trips and the faulty busbar section is disconnected from the circuit.
The choice of busbar arrangement depends on factors like reliability, flexibility, and cost. Key considerations include ease of maintenance, continuity during maintenance, and economical installation.
This arrangement uses two busbars and a bus coupler to connect isolating switches and circuit breakers to the busbar. It allows load transfer from one bus to another in case of overloading. This scheme maintains supply continuity even during faults, allowing maintenance without disrupting continuity. However, the use of two busbars increases system costs.
B) Main and Transfer Bus Arrangement
This arrangement uses two busbars and a bus coupler to connect isolating switches and circuit breakers to the busbar. It allows for load transfer from one bus to another in case of overloading. It maintains supply continuity even during faults, and maintenance can be done without disrupting continuity. However, the use of two busbars increases system costs.
Comments
Post a Comment