Ferrite core

 In electronics, a ferrite core is a type of magnetic core made of ferrite on which the windings of electric transformers and other wound components such as inductors are formed. It is used for its properties of high magnetic permeability coupled with low electrical conductivity (which helps prevent eddy currents). Moreover, because of their comparatively low losses at high frequencies, they are extensively used in the cores of RF transformers and inductors in applications such as switched-mode power supplies, and ferrite loopstick antennas for AM radio receivers.

Several ferrite cores

FerritesEdit

Ferrites are ceramic compounds of the transition metals with oxygen, which are ferrimagnetic but non-conductive. Ferrites that are used in transformer or electromagnetic cores contain iron oxides combined with nickelzinc, and/or manganese compounds. They have a low coercivity and are called" "soft ferrites" to distinguish them from" "hard ferrites", which have a high coercivity and are used to make ferrite magnets. The low coercivity means the material's magnetization can easily reverse direction while dissipating very little energy (hysteresis losses); at the same time, the material's high resistivity prevents eddy currents in the core, another source of energy loss. The most common soft ferrites are:

  • Manganese-zinc ferrite (MnZn, with the formula MnaZn(1−a)Fe2O4). MnZn have higher permeability and saturation levels than NiZn.
  • Nickel-zinc ferrite (NiZn, with the formula NiaZn(1−a)Fe2O4). NiZn ferrites exhibit higher resistivity than MnZn, and are therefore more suitable for frequencies above 1 MHz.

For applications below 5 MHz, MnZn ferrites are used; above that, NiZn is the usual choice. The exception is with common mode inductors, where the threshold of choice is at 70 MHz.[1]

As any given blend has a trade-off of maximum usable frequency, versus a higher mu value, within each of these sub-groups, manufacturers produce a comprehensive range of materials for different applications blended to give either a high initial (low frequency) inductance or lower inductance and higher maximum frequency, or for interference suppression ferrites, an extensive frequency range, but often with a very high loss factor (low Q).

It is essential to select the suitable material for the application, as the correct ferrite for a 100 kHz switching supply (high inductance, low loss, low frequency) is quite different from that for an RF transformer or ferrite rod antenna, (high frequency, low loss, but lower inductance), and different again from a suppression ferrite (high loss, broadband)

Comments

Popular posts from this blog

UNMANNED POWER SUBSTATION SYSTEM

MOSFET

Difference Between AC And DC Motor